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ABSTRACT

Preliminary evaluations of protected MARK 7 MOD 0 ignition
element plug assemblies indicate losses of 1.43 and 3 db respectively
at 80 and 200 mc. These estimates are derived from analysing the
component as an equivalent symmetrical T-network; the parameters of the
network are derived from measurements of open and short circuit input
impedance. Though the resulting estimates appear high, the method
warrants further study.

A constant current functioning test of this element shows it
to be more sensitive than its unprotected counterpart; it requires only
7.8 amperes compared to 9.2 amperes @ 0.1 msec for 50% functioning.
Dynamic resistance which ranges from 55 ohms/second at 3 amperes input
to 956 ohm/second at 10 amperes was determined also for the protected
MARK 7 element. Its thermal time constant was found to be 11.6 msec.

Additional investigations into means for measuring power to
the base of an arbitrary termination proceeded along the line of comparing
differential power measurements to measurements derived from detecting
the maximum and minimum voltages on a slotted line preceding the load.
This latter technique, called the voltage min-max method, appears to be
superior to any new technique tried to date.
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SUMMARY

Impedance measurements made of the input to the protected
MARK 7 MOD 0 plug assembly have been continued. From determinations
of this impedance with the bridge side of the assembly first shorted
and then opened we obtain data to specify a symmetrical T-network model
of the t;nit. Including the bridge wire terminations as a pure resistance
(reasonably valid up to 200 mc) we then compute the theoretical terminated
loss, Results indicate essentially no loss up to 30 mc, but at 80 mc
we predict 1.43 db loss and at 200 mc it appears to be 3.0 db. Compared
to the predicted attenuation based upon the lossy material's character-
istics these estimates are high. However, we seem to have hit close
enough to warrant additional investigation.

A constant current test was performed with a pulse of 0.1
millisecond duration. For 50% probability of functioning, according to
these test results, only 7.8 amperes are necessary. This indicates the
protected MARK 7 to be more sensitive than the standard, which requires
9.21 amperes for the same response. Measurements were made of the
quantity, dr/dt for the protected plug. At 3 amperes the rate of change
of resistance with time is 55 ohms/per second, over intervals of about
816 microsecond or less. At the other extreme, 10 amperes, the resistance
change with time is 956 ohm/per second, valid under 123 microsecond.
Values between these test end points are almost linearly dispersed.
The thermal time constant was determined for this unit and found to be
11.6 millisecond on the average. This is the time for the bridgewire
temperature to drop to 36.8% of its initial value.

Additional studies of better means to measure power to the
base of an arbitrary termination now involve comparing two likely
methcds, The differential power method discussed in the previous report
is compared with a new approach, the voltage min-max method. In this
latter method a calibrated voltage probe is used with a slotted line to
determine the maximum and minimum voltage in the line. With these data
and knowledge of the characteristic impedance of the line we readily
determine power from the expression,

V V.
p _-max min

z
0

With the MARK 1 MOD 0 Squib as termination, it appears that
this new method has great possibilities. From the data, we have determined
the loss introduced by the directional coupler to be about 1 db at 3000
mc, and the loss in the base of the plug about 12 db. Using the slotted
line permits the power to be determined at a number of points in the
systems, which may prove valuable in estimating system losses when they
become more significant.

ii
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1. COMPONENT TESTING

Initially, impedance measurements were considered for the

primary purpose of specifying the reflection coefficient to be expected

when the protected elements were mounted at the end of a 50-ohm

transmission line. This information collected last month would give us

insight into the problem we might expect in measuring power while

performing RF sensitivity evaluations. Work performed this period

indicates that we might be able to deduce an estimate of probable firing

sen.itivity from additional impedance data collected on a minimum number

of ltems

This period we conducted most of the dc evaluations outlined

for the protected MARK 7 MOD 0 ignition element: a constant current

test at 0.1 msecond, evaluation of dr/dt and, in addition, determinat ion

of thermal time constant. The remaining dc evaluation, a long-time

exposure to a non-initiating pulse followed by a dc test to determine

if sensitivity is altered, will be conducted when the companion RF test

is scheduled.

1.1 PF Evaluation of Protected MARK 7 MOD 0 Ignition Element; impedance
Study

Last month we measured the input impedance of a number of

prote.ted MARK 7 MOD 0 ignition elements. These data were collected

at a number of frequencies and included measurements on both complete

unite and bridged plug assemblies. Results indicated that the impedance

of the total item was duplicated by the impedance of the plug only, at,

least up to a frequency of 500 Mc.

While determining these impedances we conceived the idea that

we might, by making additional measurements, collect data from which

we could predict the RF loss for the assembly. Consequently, we now

propose that the plug be represented as an equivalent T-netwcik, in

- 1 -



THE FRANKLIN INSTITUTE e Labonnies for Reieac-h and Daelog~mmt

P-BI980-LL

which form we !an calculate the ratio of powEr dissipated in the plug

to that dissipated in the bridge wire.

Any unknown network can be represented as an equivalent T; the

transformations of measurements are given in Figure 1-1. Because of its

geometry we might best characterize the protected MARK 7 plug as a non-

symmetrical T-network. However, to minimize the effort initially we

assumed it to be symmetrical. Accordingly, we determined the inpu,

impedance of two separate plug assemblies with their outputs alternately

open and shorted. Using average values from these measurements we

determined the :quivalent T network impedances. These data are all

included in Table 1-1. The input impedance of the bridge plug (average

of 5 units) is also included for comparison.

Assuming the ne-,work to be terminated by a 1 ohm bridge wire

we computed the ratio of power dissipated in the termination to power

dissipated in the total assembly (total power input). The values in

Table 1-1 labelled base loss are equal to ten times the logarithm

(base 10) of this power ratio. i.e two results of greater than r'

magnitude are plotted in Figure 1-2, which includes a point of 5.73

db at 500 Mc representing the average attenuation evaluated for this lot

of protected elements during their development.

These three data points appear to define a straight line. Had

the slope of this line been 530 we would have reason to be exceedingly

optimistic about the technique used to obtain the data; 530 is the slope

of the attenuation-frequency characteristic determined for the

attenuating material used in the protected plug development.

The fact that we determined terminated power loss from these

data would account in some measur< for the seemingly high loss values.

By extrapolating the curve we would predict a value of about 0.65 db

at 30 Mc; our calculations indicated the loss at this frequency to be

exceedingly low, nearly zero. Because of these inconsistencies we must,
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be doubtful of the reliability of this technique. However, since we

seem to have missed by such a relatively narrow margin it seems

advisable to make another trial. During the next period we will re-

appraise this technique giving thought to the merits of describing the

non-symmetrical model.

1.2 DC Evaluation of Protected MARK 7 MOD 0 Ignition Element

1.2.1 Constant Current Test at 0.1 millisecond

When the RF protected lot of MARK 7 MOD 0 ignition elements

was produced in late 1959 two constant current evaluation tests were

performed. At that time, it was intended to show that the protected

plug with its low dc resistance would not seriously alter normal

functioning of the completed ignition element. The shortest time used

was 1.0 millisecond. We have completed an additional constant current

test during this period using a pulse of 0.1 millesecond. The data

sheet for this test is appended. Results are given in Table 1-2

contrasted to similar data for the unprotected (standard) ignition

element. These data show that the incorporation of the attenuator has

not adversely altered the items normal functioning sensitivity.

Table 1-2

CONSTANT CURRENT SENSITIVITY (0.1 MILLISECOND) OF PROTECTED
AND STANDARD MARK 7 MOD 0 IGNITION ELEMENT

Current for 50% Firing Prob. Std. Dev. Pulse Dura. Sample

(amps) (log units) (log units) (msec) Size

Protected 7.807 .89249 .01357 0.100 40

Unprotected 9.21 0.96412 .0164 0.100 41
(Standard)

-6-
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1.2.2 Dynamic Resistance

Dynamic resistance characteristics of the protected MARK 7

were determined by passing constant current through the bridge wire and

recording the voltage across the bridge as a function of time. These

measurements, for input currents of from 3 to 10 amperes, are summarized
in Table 1-3. Variation of k with current is shown in Figure 1-3.dt
When using these data in computing resistance, it is recommended that
exposure time (6 T) be not longer than that indicated by the time curve

included in Figure 1-3. Extrapolation for longer intervals will tend

to show higher resistance than the true value since it does not take

into account the cooling effect of the bridgewire environment.

Figure 1-4 depicts a typical trace of voltage vs. time due

to a current through the bridge wire on which measurements of dynamic

resistance were made.

1.2.3 Thermal Time Constant

The thermal time constant is defined as the time required for

the bridgewire temperature to decay to 36.8% of the maximum temperature

excursion after application of an input stimulus that does not cause

the item to explode.

The thermal time constant of the protected MARK 7 was

determined in the following manner. A current whose magnitude was small

enough not to cause appreciable changes in the bridgewire and its

environment was passed continuouslythrough the bridgewire of the device

before, during, and after application of a large current pulse of short
duration (7 amperes for 100 us). The monitoring current was held

constant by the inclusion of a large current limiting resistor.

Since the monitoring current was constant, it was possible to

use the potential across the bridgewire (observed with an oscilloscope)

as a measure of the instantaneous value of resistance as the item

cooled after application of the relatively large current pulse.

- 7 -
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Table 1-3

DYNAMIC RESISTANCE MEASUREMENTS OF THE
PROTECTED MARK 7 MOD 0 IGNITION ELEMENT

Resistance (Averages)
Input Change Time interval at AR AR

Item Current AR Resistance Change At At
No. (amps) (ohms) At (k sec) ohms/sec ohms/sec u sec

1 0.047 910 52

2 0.083 870 95

3 .067 800 84

4 3.0 .037 970 38 55 816

5 .015 360 43

6 .027 900 30

7 .039 900 43

8 .080 370 216

9 .060 360 167

10 .080 420 190

11 5.0 .080 3 80 211 217 382

12 .080 360 222

13 .100 400 250

14 .100 385 260

15 .080 380 222

16 .130 172 756

17 .100 176 568

18 7.5 .093 160 581 582 158

19 .069 160 431

20 .069 120 575

21 .110 120 917

22 .110 110 1000

23 10.0 .115 112 1027 956 123

24 .120 132 909

25 ,13o 140 929
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INPUT CURRENT = 3amps
V , RI HORIZONTAL DEFLECTION = IOOk~soc/division

VERTICAL DEFLECTION= 0.2 volts/division

S,---t

FIG. 1-4 TYPICAL TRACE FOR DETERMINING DYNAMIC RESISTANCE

HORIZONTAL DEFLECTION = 5 msec/division
R VERTICAL DEFLECTION = I mvolts/division

Vi Rj MONITORING CURRENT z 125 mamp
T-= TIME FOR E TO DECAY TO Eo/e

r= 12 msec

FIG. I-5. TYPICAL TRACE FOR DETERMINING THERMAL TIME CONSTANT

A typical oscillogram is shown in Fig. 1-5. The circuit used

for these measurements is given in Fig. 1-6. Results of these tests

appear in Table 1-4. Values range from 8.5 to 14.0 milliseconds, the

grand average being 11.6.

< t = 
lOO;" sec CURRENT

l-amp RESI STORLMTN
PULSE FORMING YTTOLoNETWORK 1 

7

MK-7 125mQ

FIG. 1-6. CIRCUIT FOR DETERMINING THERMAL TIME CONSTANT

- 10 -
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Table 1-4

THERLi L TIME CONSTANT OF PROTECTED MARK 7
MOD 0 IGNITION ELEMENT

Item Time Constant T (msec)
No. (three readin.,s)__ Ave

1 11.8 10.8 11.5 11.4

2 14.0 13.0 12.5 13.2

3 12.0 11.0 12.0 11.9

4 12.0 12.0 11.0 11.7

5 14.0 13.0 13.0 13.3

6 9.0 9.5 12.0 10.2

7 8.5 9.,l 11.0 9.5

8 12.0 10.0 10.0 10.7

9 11.0 11.0 12.0 11.3

10 13.5 12.5 13.0 13.0

Grand Average 11.6

2. COMPONENT DEVELOPMENT

No work has been done on this phase during this period.

3. INSTRUMENTATION-POWER MEASUREMENTS BY
Vu, rAGE PROBE TECHNIQUE

Experimental results of our first attempt at evaluation of a

differential power measurement technique, at 3 and 10 Gc, were given ir

the previous report. The data obtained was not completely conclusive;

and " e work has been continued in the hope of resolving some of tht.

conflicts appearing during the first tests.
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We were fortunate in being able to combine into one experimen

additional tests with the differential power technique and initial tests

with a slotted transmission line and calibrated traveling probe. This

slotted line and traveling probe technique, while generally known, is not

a commonly used method for measuring net power to a load. Preliminary

investigations have indicated that this method may be of greater value

to our work than the differential power method.

3.1 Basis of Probe-in-Slotted Line Method

This technique is clearly outlined in section 3-88 of the

"Handbook of Electronic Measurements,"(1). A part of the text is quoted:

"The power is also given by

V Vmin - V 2  SV 2

p max mn__mam_

z Sz z
0 0 0

where V is the RMS voltage at a point of voltagemax

maximum and Vmi n is the RMS voltage at a point of

voltage minimum on the line.
V

S= max
V .
man

The probe may be calibrated with known powers

into a matched load and then used to measure th~e

pertinent qaantitie: in this equation. The

voltage calibration then includes the characteristic

impedance of the line, and the equation may be

directly applied to the measurement of power delivered

to the load."

This discussion suggests procedures which are highly applicable

in our present RF work. First, a method for calibrating a crystal probe

(1) Handbook of Electronic Measurements VOL. I, edited by Moe Wind;
Polytechnic Institute of Brooklyn, Microwave Research Institute;

Contract Nos. AF-30(602)-677 and AF-30(602)-1578. (Quotation from
section 3-88).

- 12 -
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as a true RMS volt meter is implied. Secondly, using this calibrated

probe, the values of maximum and minimum voltage read at points a

quarter-wavelength apart on the line may be combined with the known

characteristic impedance of the slotted line to obtain the net power

toward the load. However, the effective point of measurement will still

be some distance from the load. Under the most ideal conditions the

first point of measurement is expected to be a voltage maximum approximately

1/4 wavelength away from the load and the companion measurement will

occur at an additional 1/4 wavelength distance. However, we envision

refinements which will allow us to estimate the power lost in the

sections of transmission line between the load and the point where we

effectively measure power. This will permit us to quote powers at the

base of th termination, independent of systems losses.

3.1.1 Voltage Calibratio. of the Slotted Line Probe

We experienced no particular difficulties in calibrating the

crystal probe in the carriage of a Hewlett-Packard 805A slotted line

at 3 Gc. A Hewlett-Packard 434A calorimeter was an ideal self-indicating

termination for the slotted line. Figure 3-1 is a block diagram of the

requirements for the calibration.

With a fixed power output from the generator we record the

microvolt meter reading and calorimeter indication. Since the

calorimeter is 50 ohms and is terminating a 50 ohm system we expect a

flat line. Actually there was a small residual VSWR, therefore for each

power setting we recorded both the maximum and minimum voltage along the

slotted line. For a flat lossless line the voltage (V) everywhere

along it is related to the power (P) dissipated in the termination (R)

by

- [j -



THE FRANKLIN INSTITUTE • Laboratories for Research and Development

P-B1980-4

MOVABLE
CARRIAGE DC

WITH MICROVOLT
CRYSTAL METER

PROBE

&HP NO. 805A SLOTTED LINE HP. NO. 434A

FIG. 3-I SYSTEM FOR CAL/BRATION OF CRYSTAL PROBE

We computed the value of the radical for the various power

levels at which we recorded data and assigned this new value to the

voltmeter reading. In this manner we obtained the calibration shown

in Figure 3-2. Because of the residual VSWR we obtain two voltages for

each power; the calibration curve is drawn as a visual average of the

points.

3.1.2 Measurements of Power by Voltage "Min-Max" Method

With the travelling probe calibrated as described in this

preceding paragraph, we are prepared to measure power for any

arbitrary termination. Actually, the power measured in this manner is

the power flowing toward the termination at a point in the transmission

system located between the points of measurement. Working at 3000 Mc

with a MARK 1 MOD 0 as termination, we found that we could obtain three

voltage minimums and maximums alternately spaced along the slotted line.

Thus we may determine the power flow at three equally spaced points

along the line. If the line is relatively lossy we should note a

significant difference between power measured at these points,

decreasing as we approach the load. If they show little difference we

- 14 -
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may assume the system to be relatively lossless, and the power flowing

in the line should be the power dissipated in the termination.

A number of measurements were made by this technique and by

the differential power method discussed last period. Details and resul-s

are given in the next section.

3.2 Differential Power and Voltage "Min-Max"
Power Measurements Compared

With a MARK 1 MOD 0 squib plug as termination we endeavored

to measure the power input to its base by both of the methods we have

just discussed. So as to have a direct comparison of the two systems,

we made both measurements simultaneously by placing the measuring

equipment in series. Because each technique effectively measures the

power flow at one point in the transmission line, the system placed

farthest away from the load will indicate the power dissipated in the

load plus the power absorbed by the other measuring system. In view

of this we made two determinations, first with the dual directional

coupler (differential power) nearest the load, then with the measurement

systems interchanged. The two alternate system arrangements are shown

in Figure 3-3, and the results are given in Tables 3-1 and 3-2.

For measurements of differential power the calibration

procedure detailed in the previous month's report was used. The forward

port output was found to give an indication of 9.44 mw per watt of main

line forward power and the reflected port 9.62 mw/watt of reflected power.

The calibration given in Figure 3-1 was used for reducing the voltage

min-max data.

At 3000 Mc the slotted line was long enough to enable us to

collect three pairs of min-max voltages, and we took full advantage of

this condition. Since there did not appear to be any definite indication

of a smooth decrease in power along the line we merely averaged the three

results.

- iv -
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For ease in comparison we have extracted the essential data

from the detailed tabulations and presented it in summary form in Tablu

3-3. The voltage min-max power measurement is the lower value of the

two simultaneous determinations whether or not it is measured nearest

the load. The differential power measurements seem to be constant for

any one system input power without regard to this sequence of the

equipment. This -;I us to surmise that the slotted line is essentially

lossless, and the dual directional coupler introduces about 20% loss, or

roughly 1 db.

For a Clairex cell reading of 25, dc power to the bridge wirt

is about 150 mw. Assuming that jO0 Mc power would produce nearly tht;

same cell , ', i as dc, ,nd flrti.er assuming the :'w -max power to be

the actual power input to the device, we can estimate the base loss,

which comes out to be about 11.7 db; using differential power we would

predict a loss of about 12.6 db. It is interesting to note that these

predictions differ by about 1 db, or the amount of loss associated with tht

dual directional coupler.

These results do not allow us to conclude that we have, in

fact, measured the power to the base of the device unless we can assume

the transition between the slotted line and the load to be lossless.

Since our data indicate!. a relatively low VSWR (-8 to 10) we may be

justified in making such an assumption. Nevertheless, we will explore

other means to validate the technique. We will attempt its validation

for the case of high ",WR and correspondingly high system losses.

Toward this end we will examine the possibility of the voltage min-max

method being usable at 1000 Mc to determine the power to the base of

the MARK 1 MOD 0. Previous experiments ,:,iggest that" --

base differs little from the power at 'he bridge wire at 1000 Mc,

although the VSWR is on the order of 50.
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Table 3-3

SUMMARY OF POWER MEASUREMENTS

Voltage
Input Min-Max Differential Photo
Power Power Power Cell
(Watts) (Watts) (Watts) Output

2.8 2.77 2.75 25

2.4 2.14 2.23 10

1.9 1.73 1.98 -

1.5 1.41 1.52

Voltage
Dif -",rential Min-Max

Power Power

2.8 2.63 2.19 25

2.4 2.27 1.87 14

1.9 1.81 1.4 -

1.5 1.27 1.10
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APPENDIX

CONSTANT CURRENT EVALUATION DATA

for

PROTECTED MARK 7 MOD 0 IGNITION ELEMENT

0.1 msec PULSE DURATION

A
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